Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The “super-puffs” are a population of planets that have masses comparable to that of Neptune but radii similar to Jupiter, leading to extremely low bulk densities (ρp ≲ 0.2 g cm−3) that are not easily explained by standard core accretion models. Interestingly, several of these super-puffs are found in orbits significantly misaligned with their host stars’ spin axes, indicating past dynamical excitation that may be connected to their low densities. Here, we present new Magellan/Planet Finder Spectrograph radial velocity measurements of WASP-193, a late F star hosting one of the least dense transiting planets known to date ( , ,ρp = 0.060 ± 0.019 g cm−3). We refine the bulk properties of WASP-193 b and use interior structure models to determine that the planet can be explained if it consists of roughly equal amounts of metals and H/He, with a metal fraction ofZ= 0.42. The planet is likely substantially reinflated due to its host star’s evolution, and expected to be actively undergoing mass loss. We also measure the projected stellar obliquity using the Rossiter–McLaughlin effect, finding that WASP-193 b is on an orbit well aligned with the stellar equator, with degrees. WASP-193 b is the first Jupiter-sized super-puff on a relatively well-aligned orbit, suggesting a diversity of formation pathways for this population of planets.more » « lessFree, publicly-accessible full text available March 25, 2026
-
Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025M☉and a radius of 0.4250 ± 0.0091R☉. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M☉. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029M☉and a radius of 0.5299 ± 0.0091R☉. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K).more » « less
-
Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( ) and TOI-5301 b ( ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.more » « less
An official website of the United States government
